Authors
J Acosta, A Nebot, Pedro Villar, Josep M Fuertes
Publication date
2007/12/1
Journal
International Journal of Systems Science
Volume
38
Issue
12
Pages
991-1011
Publisher
Taylor & Francis Group
Description
Fuzzy Inductive Reasoning (FIR) is a data-driven methodology that uses fuzzy and pattern recognition techniques to infer system models and to predict their future behavior. It is well known that variations on fuzzy partitions have a direct effect on the performance of the fuzzy-rule-based systems. The FIR methodology is not an exception. The performance of the model identification and prediction processes of FIR is highly influenced by the discretization parameters of the system variables, i.e. the number of classes of each variable and the membership functions that define its semantics. In this work, we design two new genetic fuzzy systems (GFSs) that improve this modeling and simulation technique. The main goal of the GFSs is to learn the fuzzification parameters of the FIR methodology. The new approaches are applied to two real modeling problems, the human central nervous system and an electrical distribution …
Scholar articles
J Acosta, A Nebot, P Villar, JM Fuertes - International Journal of Systems Science, 2007